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Abstract

Purpose of review: The burden of heat-related adverse occupational health effects, as well as 

traumatic injuries, is already substantial. Projected increases in mean temperatures and extreme 

events may increase the risk of adverse heat health effects and enhance disparities among exposed 

workers. This article reviews the emerging literature on the relationship between heat exposure 

and occupational traumatic injuries and discusses implications of this work.

Recent findings: A recent meta-analysis of three case-crossover and five time-series studies in 

industrialized settings reported an association of increasing occupational injuries with increasing 

heat exposure, with increased effect estimates for male gender and age less than 25 years, although 

heterogeneity in exposure metrics and sources of bias were demonstrated to varying degrees across 

studies. A subsequent case-crossover study in outdoor construction workers reported a 0.5% 

increase in the odds of traumatic injuries per one °C increase in maximum daily humidex (odds 

ratio 1.005 [95% CI 1.003–1.007]). While some studies have demonstrated reversed u-shaped 

associations between heat exposure and occupational injuries, different risk profiles have been 

reported in different industries and settings.

Summary: Studies conducted primarily in industrialized settings suggest an increased risk of 

traumatic injury with increasing heat exposure, though the exact mechanisms of heat exposure’s 

effects on traumatic injuries are still under investigation. The effectiveness of heat-related injury 

prevention approaches has not yet been established. To enhance the effectiveness of prevention 

efforts, prioritization of approaches should not only take into account the hierarchy of controls, 

social-ecological models, community and stakeholder participation, and tailoring of approaches to 
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specific local work settings, but also methods that reduce local and global disparities and better 

address the source of heat exposure, including conservation informed land-use planning, built 

environment, and prevention through design approaches. Participation of occupational health 

experts in transdisciplinary development and integration of these approaches is needed.
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Introduction

The global burden of occupational injuries is estimated to account for approximately 

312,000 fatal injuries (8.8% of the global burden of mortality due to unintentional injuries) 

in 2000, and 3.5 years of healthy life lost per 1,000 workers annually [1]. Although 

substantial progress has been made, certain industries, such as construction and agriculture 

in the United States (US), still have high rates of traumatic injury and high risks of adverse 

heat health outcomes [2]. The need to better understand risk factors for occupational injuries 

and to further refine and develop new and effective prevention approaches is apparent in 

research priorities such as the US National Institute for Occupational Safety and Health’s 

cross-sector focus on traumatic injury prevention [3].

One potential risk factor for occupational traumatic injuries that has been increasingly 

studied is heat exposure. In this review, heat exposure refers to ambient heat exposure, while 

heat stress is the net heat exposure from a combination of metabolic heat generation from 

heavy physical work, environmental factors such as air temperature, humidity, wind, and 

solar radiation, and clothing [4]. Heat stress induces heat strain, a physiological response in 

humans intended to maintain thermal equilibrium, which when overwhelmed can lead to 

heat-related illnesses such as heat stroke, which can be fatal [4]. Workers in industries at 

high risk for traumatic injuries are often also at high risk for heat stress. For example, 

construction and agricultural workers often work outdoors with exposure to elevated air 

temperatures, solar radiation, and high metabolic demands from heavy physical work [2].

There is an emerging literature on the relationship between heat exposure and occupational 

injuries [5–16]. Hereafter, injury refers to occupational traumatic injury, such as fractures, 

rather than work-related musculoskeletal disorders, such as carpal tunnel syndrome, that 

result from a combination of awkward postures, repetitive motions, and high force activities 

[17]. In this paper, we review the literature on the relationship between heat exposure and 

occupational injuries and discuss the implications of this work.

Review of current evidence for an association between heat exposure and occupational 
traumatic injuries

The existing literature on the relationship between heat exposure and occupational injuries is 

summarized in Table 1. An early study by Morabito et al. reported an association between 

warm weather (average daytime apparent temperature 25–28°C) and increased 

hospitalizations for work-related injuries from June to September, 1998 and 2003, in Central 
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Italy using meteorological data from one weather station [5]. Using aluminum smelter 

company health and safety records combined with hourly weather data (outdoor heat index 

was used as a surrogate for indoor heat exposure) to assess the relationship between heat and 

injuries in aluminum smelter workers, Fogleman et al reported increased odds of acute 

injuries above a heat index of 32°C [18]. Though Fogleman et al. reported that the indoor 

environment was open to the outside year-round, the relationship between indoor and 

outdoor heat exposure may not have been the same in all work areas, and different work 

areas may have had different risks for injury [18].

Subsequent studies have been observational time-series, case-crossover, and cross-sectional 

studies. A meta-analysis by Binazzi et al. of the three case-crossover and five time-series 

studies [7–14] published between 2000 and 2018 focused on workers in Canada, US, 

Australia, China, Spain, and Italy and reported a statistically significant increased pooled 

relative risk of occupational injuries with increasing heat exposure [15]. Binazzi et al’s 

systematic review identified heterogeneity in exposure metrics and sources of bias in 

published observational studies but also identified potentially interesting subgroup effects. In 

the main meta-analysis, effect estimates were pooled across different risk estimates, 

including risk estimates per 1°C increase in daily maximum temperature in both time series 

and case-crossover studies [7,12], daily maximum humidex categories or °C above a 

maximum wet-bulb globe temperature (WBGT) threshold [10,11], and for exposures above 

a pre-determined percentile of daily average or max temperature in other time-series studies 

[13]. Except for one study [12], risk of bias related to recruitment strategy was generally 

probably low, but half of the studies had a high or probably high risk of bias related to 

exposure assessment [7,9,12,13], confounding [7,9,10,13], and incomplete outcome data 

[8,10,12,13]. Confounding was of particular concern in time-series studies, where unlike 

case-crossover studies, time invariant confounders are not addressed in the design. 

Excluding agriculture-specific studies [11,13], the pooled relative risk of occupational 

injuries was estimated to be 1.002 (95% CI 0.998–1.005) for time-series studies, using a 

random effects model, and 1.014 (95% CI 1.012–1.017) for case-crossover studies, using a 

fixed effects model, which was selected due to lack of heterogeneity. Subgroup pooled 

estimates showed increased risks of injury with increasing heat exposure for male gender, 

age less than 25 years, and agriculture (though not statistically significant). Differences in 

the effect of heat on injury by gender and age were hypothesized to be driven by differences 

in gender distributions in industrial sectors and differences in age distributions by level of 

experience, training, preventive behaviors, and physical exertion, respectively. There was no 

evidence of small-study effects or publication bias.

The existing literature has relied predominately on assumptions about work outdoors and on 

representative weather monitoring stations that may not adequately measure regional 

patterns in climate or differences between microclimates. To address these limitations, 

Calkins et al. conducted further work using an Occupational Information Network (O*NET) 

[19] approach to better characterize outdoor context along with high-resolution modeled 

meteorological data (~1/16th resolution grid [4km x 7.5km]) [16]. Calkins et al incorporated 

these methods into a case-crossover study of heat exposure and 63,720 outdoor construction 

workers’ compensation injuries from 2000–2012 in WA, US [16]. The authors reported a 

0.5% increase in the odds of outdoor construction traumatic injuries per one °C increase in 
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humidex (odds ratio [OR] 1.005 [95% CI 1.003–1.007]) with a nearly linear association of 

humidex with the risk of a traumatic injury [16]. Risks were elevated even above a humidex 

of 21°C, which is currently considered to be comfortable and not deemed high enough to 

recommend prevention actions [20].

Though the nearly linear association observed by Calkins et al. in construction was 

consistent with some studies [7,8], it was contrary to the findings of Spector et al. in 

agriculture [11], Xiang et al. in all industries [9], and Morabito et al. in all local industries 

[5], who reported reversed u-shaped associations, with injury risk declining above a 

maximum daily humidex of 34°C [11], a maximum daily temperature of 37.7°C [9], and a 

maximum daily apparent temperature of 31.7°C [5], respectively. It has been hypothesized 

that the reversal of effects at the upper extremes of exposures are not the result of a true 

reduction in risk at high temperatures, but rather reflect changes in time at risk of a work 

injury, or overestimation of exposure on injury days, related to risk reduction practices used 

to prevent heat-related illness, such as ending work shifts early on the hottest days. This 

practice may be less feasible specifically in construction, where, for example, noise 

ordinances prohibit construction activities outside of typical business hours.

In comparison with a similar case-crossover study in agriculture in the same state [11], ORs 

in agriculture were higher than Calkins et al.’s construction ORs at lower humidex values, 

potentially due to differences in safety culture, task-related hazards, and piece-rate pay in 

agriculture. Further work is needed to better characterize the work environment by task, job 

site, or other factors that could improve categorization of indoor and outdoor contexts, verify 

whether tasks performed on the day of injury occur outdoors, and address limitations of 

workers’ compensation data such as likely under-reporting. Yet these studies suggest 

important differences in risk profiles by industry and other factors, which are critical to 

understand and address when tailoring prevention efforts.

There have been few studies that have examined the relationship between heat exposure and 

injury risk in low- and middle-income tropical countries, where rapid urbanization and the 

cash economy drive heavy workloads in very hot and humid conditions. A cross-sectional 

analysis published by Tawatsupa et al. in 2005 examined survey data from 58,495 paid 

workers in Thailand using self-reported data on heat stress (exposure to uncomfortable high 

temperatures in the past year) and injuries (serious injuries that occurred at the workplace) 

[6]. The study reported an increased risk of injury (adjusted OR 2.12, 95% CI 1.87–2.42 for 

males, and adjusted OR 1.89, 95% CI 1.64–2.18 for females) among participants who 

reported being exposed to heat stress often, compared to never/rarely exposed. A statistically 

significant dose-response relationship in injury risk was observed for increasing exposure 

categories (never/rarely, sometimes, and often) in both males and females. Though the 

Tawatsupa et al. study is subject to biases related to its cross-sectional survey design, 

reliance on self-reporting of both exposure and outcome potentially producing correlated 

errors, and missing information about the time and location of heat exposure relative to 

injury, it provides a rare window into heat-related occupational injuries in tropical, rural 

settings.
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Though these studies, taken together, suggest an association between occupational heat 

exposure and occupational traumatic injuries, findings must be interpreted with several 

important limitations in mind. First, exposure assessment has relied on the most accessible 

heat exposure metrics such as those based air temperature and humidity rather than net heat 

exposure, or heat stress, which includes metabolic heat generation from heavy physical 

work, environmental factors such as air temperature, humidity, wind, and solar radiation, and 

clothing. Second, the use of administrative data sources such as workers’ compensation 

claims data, which rely on recognition and reporting, as the source of injury outcomes data 

in many of these studies may result in incomplete capture of all injury cases, particularly 

less severe cases.

Potential mechanisms for the association between occupational exposure to heat and 
traumatic injuries

Mechanisms underlying the relationship between occupational exposure to heat and 

traumatic injuries are not fully elucidated, and most mechanistic studies have been 

performed in controlled laboratory settings. Several mechanisms have been investigated, 

including: impaired balance [21–24]; changes in safety behavior [25]; muscle fatigue 

[23,26,27] and dehydration [22,28], particularly in conjunction with one another; poor sleep 

or sleepiness [29–31]; inadequate acclimatization [32], which can be influenced by 

inadequate acclimatization schemes or work organization; and unsafe work behaviors, 

though it is unclear whether this finding is related to effects on cognitive performance or 

behaviors related to discomfort and irritability under heat stress conditions [25].

Research in exercise, human physiology, and occupational settings report heat-related 

changes in cognitive performance [33,34] and psychomotor vigilance [28], which may 

influence mental status, dexterity for complex motor tasks, and response time after exercise 

or in conditions of hyperthermia [23,26,28,35–37]. These effects may in turn increase the 

risk of occupational injury [27,33,38]. Ambient temperature increases are thought to initially 

improve cognitive performance before having deteriorative effects beyond some temperature 

threshold [39–41]. Complex tasks are more susceptible to effects of heat stress [37,42–44]. 

While short bouts of low or moderate activity can improve performance on simple or 

complex cognitive tasks [39,45,46], longer and more intense bouts of activity, dehydration, 

and thermal comfort can decrease it [37,43,47–49]. Potential pathways of cerebral 

impairment caused by heat stress include reduced blood flow due to high demands on the 

cardiovascular system related to dehydration and evaporative cooling [50].

A cross-sectoral (public health and conservation) series of studies in agricultural 

communities in East Kalimantan, Indonesia sought to address the gap in the literature on 

heat exposure and cognitive performance in tropical rural industrializing settings. An 

experimental study from this series randomized 363 acclimatized, adult workers in rural 

communities to deforested versus forested settings to perform a representative work task for 

90 minutes [51]. Scores on a validated general cognitive assessment test (range: 1–18) and 

episodic memory test (range: 1–10) were compared in participants performing a 

generalizable task in a deforested compared to a forested area. Participants in deforested 

settings answered, on average, one less question (−0.94, 95% CI: −1.80- −0.19) or recalled 
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one word less (−0.88, 95% CI: −1.50- −0.20) on the tests, respectively, with stronger effects 

in male compared to female participants [52], and also spent up to an average of 5.17 more 

minutes with an estimated core body temperature exceeding 38.5°C [51]. While the 

mechanism of heat exposure’s effects on traumatic injuries is still under investigation, heat 

effects on cognition have been demonstrated in different settings, including field settings, 

internationally.

Implications and future directions

Current evidence suggests an association between heat exposure and occupational injuries, 

and there are plausible potential mechanisms for this association. Effect estimates and risk 

profiles of heat-related occupational injuries differ in different industries and settings, 

suggesting a need to tailor prevention approaches in different settings. Heat exposure does 

not occur in a vacuum – the built and natural environment, the regulatory environment, and 

other factors will continually affect the level of heat exposure and therefore risks to heat-

related occupational health, including occupational injuries. In addition, the risk of adverse 

occupational health effects caused by heat exposure is likely to increase as mean 

temperatures, in addition to the frequency and severity of heat waves, are projected to 

increase in the future with climate change [53–55]. Focusing on heat-related injury 

prevention efforts at the individual or workplace level is important, but factors beyond the 

worker and workplace must be considered to achieve a larger impact.

Existing approaches to the prevention of adverse heat effects—Two frameworks 

that have been used to guide intervention development for the prevention of heat health 

effects relevant to heat-related injuries are: 1) the traditional hierarchy of controls framework 

(Fig. 1a); and 2) the social-ecological model (SEM) [56] (Fig. 1b). The hierarchy of controls 

is a framework rooted in industrial hygiene that characterizes hazards – in this case, heat 

stress – into categories of elimination/substitution, engineering controls, training & 

administrative controls, and personal protective equipment (PPE) on a continuum of 

‘strongest’ (e.g. elimination) to ‘weakest’ (PPE use, which relies on individual behavior) 

[57]. Care must be taken not to introduce risk factors for other adverse occupational health 

outcomes while attempting to reduce heat exposure. For example, changing work 

organization to include night work in order to reduce heat exposure may introduce risk 

factors for injuries such as reduced visibility and disruption in sleep.

The hierarchy of controls has been appropriately informed by research in specific industries 

and working populations in order to tailor heat stress controls to these workers. For example, 

qualitative work in Latinx agricultural workers in the US suggests that heat prevention 

training that does not address certain beliefs may not be effective [58]. These findings have 

been integrated into heat training materials for this population [59,60]. However, training is 

not a strong control per the hierarchy of controls, and the effectiveness of integrating 

findings on the relationship between heat exposure and traumatic injuries on reductions in 

injury outcomes has not yet been demonstrated.

Though the hierarchy of controls remains a useful framework, it is not sufficient for 

addressing factors outside the workplace that may also influence occupational health. Recent 
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work underlines the importance of addressing occupational and ‘non-occupational’ factors 

with the goal of improving well-being [61,62] and addressing larger global trends in the 

nature of occupational health [63]. The SEM, which has been adapted for occupational 

health, addresses this gap by incorporating not only individual, inter-personal, and employer-

level factors but also community-level factors, with the underlying premise that addressing 

only one level is not sufficient [64]. Studies evaluating heat-related injury prevention 

interventions aimed at multiple levels simultaneously, within and outside the workplace, 

have not yet been published.

Though neither is sufficient, the hierarchy of controls and SEM frameworks inform one 

another. For example, approaches that target SEM levels that rely on individual behavior are 

usually not as effective as those that do not, as indicated by the hierarchy of controls. Most 

workplace controls occur at the employer SEM level, though effective PPE use also relies on 

personal behavior at the individual SEM level. Importantly, many aspects of prevention are 

beyond the control of an individual worker, and intervention approaches must therefore 

ultimately address overarching policies or other systemic changes at the workplace and other 

levels (Fig. 1).

Expanded approach to enhance impact—The strongest control in the hierarchy of 

controls is hazard elimination, or at least reduction, yet this is minimally integrated into the 

current prioritization of heat prevention interventions, at least for outdoor workers. In 

existing climate change and occupational health frameworks, factors such as deforestation 

and urbanization are acknowledged as contextual factors, and resulting increases in ambient 

temperatures drive research, surveillance, and risk assessment and management priorities 

[65]. We propose to expand current approaches by bringing these contextual factors into 

direct consideration in the prioritization of prevention approaches. More specifically, we 

propose incorporating conservation-informed land use planning and built environment 

considerations (Fig. 1c), in addition to hierarchy of controls and social-ecological 

approaches, the relationships between them, and relevant policies and plans, into the 

prioritization of prevention approaches (Fig. 1). Notably, conservation-informed land use 

planning and built environment changes include system-wide changes that may extend 

geographically and politically beyond the highest (community) SEM level. This expanded 

approach (Fig. 1c) could be used specifically to prioritize heat-related injury prevention 

efforts.

Prioritized approaches should better address the source of heat exposure and should focus on 

populations disproportionally exposed to and/or vulnerable to excessive heat – now and in 

the future. This includes populations experiencing local climate disparities as well as 

populations directly affected by large-scale land-use decisions such as tropical deforestation 

in developing countries, which can ultimately also affect workers in developed countries 

through global temperature changes. For example, low-latitude, poorer, tropical countries are 

already experiencing hot, humid climates and are projected to have the most extreme future 

temperatures [66–68]. Though there may be more flexibility in work organization in 

subsistence compared to industrial agricultural settings, agricultural populations in these 

countries, particularly in small-holder agricultural settings, may have limited adaptive 

capacity and infrastructure (e.g., electricity, running water, and full-service health centers) to 
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address adverse health effects from increasing temperatures [69]. Yet, there are over 570 

million households farming on small agricultural plots (<10 hectares), primarily for 

subsistence purposes, globally [70].

Although heat stress is not as pronounced in certain developed countries as it is in tropical 

developing countries, vulnerability factors still contribute to local heat health disparities. In 

Washington State (WA), US, a project integrating on-the-ground experiences and 

perspectives of community members with published research identified factors contributing 

to disparities in how WA communities experience and cope with the climate change-related 

hazards [71]. These factors included population characteristics, such as race/ethnicity, 

wealth, educational attainment, occupation, political voice and the strength of community 

organizations [71]. Communities of color, indigenous peoples, communities with lower 

incomes, and Latinx agricultural workers tended to face the greatest risks of adverse effects 

of climate change [71].

We now give one example of conservation-informed land-use planning in a rural tropical 

setting and one example of a built environment approach in an urban setting, noting 

hierarchy of controls and SEM considerations for both, though we acknowledge that there 

are many other examples. Conservation-informed land-use planning in this context involves 

first identifying the most promising land-use strategies from a conservation perspective that 

may also reduce the risk of adverse health effects. Different land-use scenarios that involve 

forests in rural tropical subsistence settings could influence occupational health through a 

combination of local cooling in the short term (i.e. shade as an ‘engineering’ control at the 

community/employer SEM levels, combined with appropriate administrative controls such 

as avoiding work during the hottest part of the day) and contributions to climate change 

mitigation (i.e. reduction in heat exposure itself, including outside of the rural tropical area) 

in the long term. In rural tropical areas, forests can play a role not only in local cooling but 

also in climate change mitigation [72]. Importantly, forests provide cooling services through 

evaporation and transpiration [73,74]. A study in East Kalimantan, Indonesia, found that 

ambient temperatures were 2.6–8.3 °C cooler in forests compared to open (deforested) areas 

[75]. Forests also absorb greenhouse gases, and their exceptionally high carbon 

sequestration means that conserving these habitats is critical for achieving global emissions 

goals and contributing to climate change mitigation [76]. Comparisons of projected effects 

of different land-use scenarios under different future climate scenarios on health and 

economic outcomes could inform local decision-making if appropriately disseminated. Not 

only could implementation of conservation-informed land-use planning that is beneficial to 

health influence occupational health and well-being, but it also aligns with international 

climate goals, including the Paris Agreement and the United Nation’s Sustainable 

Development Goals [68]. Importantly, public health considerations also offer an opportunity 

to strengthen the case for tropical forest conservation. The connection between forest health 

and human health is likely to be more locally resonant than the more traditional conservation 

arguments which focus on biodiversity or carbon storage – arguments that have failed to halt 

deforestation trends [77].

Notably, this type of work involves multi-stakeholder partnerships, which is already an 

integral approach in modern occupational health and has been acknowledged as critical for 
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addressing the effects of climate change on occupational health and safety [65,78]. 

Translation of this work into practice also involves transdisciplinary collaboration between 

sectors, such as between conservation and public health, which entails investment in novel 

approaches to cultivating partnerships, convening and managing diverse teams, ensuring all 

have an equal voice, and investing in learning skills that are not currently covered in most 

training programs [79]. The participation of occupational health experts in these 

conversations is critical to ensuring occupational health considerations are included in 

decision-making.

An example in an urban setting combines elements of the built environment with the well-

established concept of prevention through design, where prevention considerations are 

included up front in designs, processes, and work organization that impact workers [80]. In 

particular, roofing construction workers are often exposed to ambient heat as well as high 

metabolic demands, and depending on the process used, they are additionally exposed to 

point-sources of heat. Common processes in commercial roofing settings include built-up 

roofing, which involves hot tar from a kettle, torch-applied roofing, and single-ply roofing, 

which involves adhesives and solvent and sometimes also hot-air equipment. In an urban 

setting, in addition to heat exposure from roofing tasks and point-sources of heat, roofers 

may be exposed to heat from urban heat island effects at work and at home. To best protect 

worker health and promote well-being, city- or higher-level adaptation strategies that 

account for the roofing process type (e.g. prioritizing processes with the least worker heat 

exposure from point sources, along with appropriate engineering and administrative heat 

controls, at the employer SEM level) and the degree to which the type of roof may reduce 

urban heat island effects (e.g. prioritizing cool roofs [81]), while taking care not to substitute 

other serious hazards for heat in the alternative process, could be prioritized if practical. This 

type of approach would also require transdisciplinary collaborations and again underlines 

the importance of ensuring occupational health experts are at the table with urban planners, 

the construction community, and other key stakeholders.

Conclusions

Studies suggest an association between heat exposure and occupational injuries, with 

different risk profiles in different industries and settings. There is a need to address the 

burden of occupational heat health effects, particularly given projected increases in mean 

temperatures and extreme events that may increase risks of adverse heat health effects and 

enhance disparities. To enhance impact, prioritization of prevention approaches should not 

only consider the hierarchy of controls in the workplace, SEMs, local and global climate 

disparities, community and stakeholder participation, and tailoring of prevention approaches 

to specific local work settings, but should also consider approaches that better address the 

source of heat exposure, beyond the worksite. These approaches include conservation-

informed land use planning, built environment, and prevention through design approaches 

that align with larger national research agendas and international climate goals. It is critical 

that occupational health experts are at the table for these transdisciplinary discussions and 

initiatives, which require novel approaches to cultivating partnerships, convening and 

managing diverse teams, investing in learning, and ensuring all have an equal voice.
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Fig. 1. 
Different frameworks applicable to the prevention of adverse heat health outcomes for use in 

prioritizing prevention approaches in populations disproportionately exposed to and/or 

vulnerable to excessive heat now and in the future, locally and globally: a hierarchy of 

controls; b social-ecological model; and c a + b + additional elements of conservation-

informed land use planning and built environment. Potential relationships between elements, 

including overarching policies and plans, are shown with dotted lines/arrows
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